Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report on the experimental demonstration of aluminum scandium nitride (AlScN)-on-cubic silicon carbide (3C-SiC) Lamb wave resonators (LWRs) realized via microelectromechanical systems (MEMS) technology, operating at high temperature (T) up to T = 800 °C, while retaining robust electromechanical resonances at ∼27 MHz and good quality factor of Q ≈ 900 even at 800 °C. Measured resonances exhibit clear consistency and stability during heating and cooling processes, validating the AlScN-on-SiC LWRs can operate at high T up to 800 °C without noticeable degradation in moderate vacuum (∼20 mTorr). Even after undergoing four complete thermal cycles (heating from 23 to 800 °C and then cooling down to 23 °C), the devices exhibit robust resonance behavior, suggesting excellent stability and suitability for high-temperature applications. Q starts to decline as the temperature exceeds 400 °C, which can be attributed to energy dissipation mechanisms stemming from thermoelastic damping and intrinsic material loss originating from phonon–phonon interactions.more » « less
-
Abstract Beta gallium oxide (β‐Ga2O3) has emerged as a highly promising semiconductor material with an ultrawide bandgap ranging from 4.5 to 4.9 eV for future applications in power electronics, optoelectronics, as well as gas and ultraviolet (UV) radiation sensors. Here, surface adsorption and air damping behavior of doubly clamped β‐Ga2O3nanomechanical resonators are probed and systemically studied by measuring the resonance characteristics under different gas and pressure conditions. High responsivities of resonance to pressure are obtained by heating the devices up to 300 °C to induce an accelerated adsorption–desorption process. The initial surface conditions of the β‐Ga2O3thin film play important roles in affecting the resonant behavior. UV ozone treatment proves effective in altering the initial surface conditions of β‐Ga2O3nanosheets by eliminating physisorbed contaminants and filling oxygen vacancy defects residing on the surface, resulting in a consequential and discernible modification of the resonance behavior of β‐Ga2O3nanomechanical resonators. The surface adsorption and desorption processes in β‐Ga2O3demonstrate clear reversibility by exposing the UV treated β‐Ga2O3to air. This study attains first‐hand information on how the surface conditions of β‐Ga2O3affect its mechanical properties, and helps guide future development of transducers via β‐Ga2O3nanoelectromechanical systems (NEMS) for pressure sensing applications, especially in harsh environments.more » « less
An official website of the United States government
